Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Simulation of the Transient Heat-Up of a Passenger Vehicle during a Trailer Towing Uphill Drive

2013-04-08
2013-01-0873
In the digital prototype development process of a new Mercedes-Benz, thermal protection is an important task that has to be fulfilled. In the early stages of development, numerical methods are used to detect thermal hotspots in order to protect temperature sensitive parts. These methods involve transient full Vehicle Thermal Management (VTM) simulations to predict dynamic vehicle heat-up during critical load cases. In order to simulate thermal control mechanisms, a coupled 1D to 3D thermal vehicle model is built in which the coolant and oil circuit of the engine, as well as the exhaust flow are captured in detail. When performing a transient 3D VTM analysis, the conduction and radiation phenomena are simulated using a transient structure model while the convective phenomena are co-simulated in a steady state fluid model. Both models are brought to interaction at predetermined points by an automatized coupling method.
Technical Paper

Hydrogen Sensors for Automotive Fuel Cell Applications

2013-04-08
2013-01-0497
Since the last decade, alternative powertrains are playing an important role in the strategy of car manufacturers. One important goal is the introduction of zero emission powertrains. These powertrain systems raise increasing political and public interest with the hydrogen fuel cell engine being the most competitive powertrain technology. During the development of this new technology, all the functional aspects including the automotive vehicle safety need to be considered. Hydrogen sensors are installed in the system to optimize the performance of a hydrogen fuel cell system and to enhance the safety concept. New results of sensor optimization and innovative test and development methods based on real vehicle data are described in this paper.
Technical Paper

An Approach to Develop Energy Efficient Operation Strategies and Derivation of Requirements for Vehicle Subsystems Using the Vehicle Air Conditioning System as an Example

2013-04-08
2013-01-0568
Rising oil prices and increasing strict emission legislation force vehicle manufacturers to reduce fuel consumption of future vehicles. In order to meet this target, the process of converting fuel into useable energy and the use of this energy by the different energy-consuming vehicle's subsystems have to be examined. Vehicles' subsystems consist of energy-supplying, energy-consuming, and in some cases energy-storing components. Due to the high complexity of these systems and their interaction, optimization of their energy efficiency is a challenging task. By introducing individual operational strategies for each subsystem, it is possible to increase the energy efficiency for a specific function. To further improve the vehicle's overall energy efficiency, holistic control strategies are introduced that distribute the energy between the subsystems intelligently.
Technical Paper

Daimler Aeroacoustic Wind Tunnel: 5 Years of Operational Experience and Recent Improvements

2018-09-24
2018-01-5038
Since 2013 the new Daimler Aeroacoustic Wind Tunnel (AAWT) is in operation at the Mercedes-Benz Technology Center in Sindelfingen, Germany. This construction was the second stage of a wind tunnel center project, which was launched in 2007 and started with the climatic wind tunnels including workshop and office areas. The AAWT features a test facility for full-scale cars and vans with a nozzle exit area of 28 m2, a five-belt system, and underfloor balance to measure forces with best possible road simulation. With a remarkable low background noise level of the wind tunnel, vehicle acoustics can be investigated under excellent conditions using high-performance measurement systems. An overview is given about the building and the design features of the wind tunnel layout. The aerodynamic and aeroacoustic properties are summarized. During the first years of operation, further improvements regarding the wind tunnel background noise and vehicle handling were made.
Technical Paper

Reduced Model of a Vehicle Cabin for Transient Thermal Simulation

2018-05-30
2018-37-0022
In the proposed work the transient thermal modeling of a vehicle cabin has been performed. Therefore, a reduced model has been developed based on a one-node discretization of the cabin air. The conduction in the solid parts is accounted for by a one-dimensional heat transfer approach, the radiation exchange between the surfaces is based on view factors adopted from a 3D reference and the convective heat transfer from the cabin surfaces to the cabin air is conducted with the help of heat transfer coefficients calculated in a 3D reference simulation. The cabin surface is discretized by planar wall elements, including the outer shell of the cabin and inner elements such as seats. Each wall element is composed of several homogeneous material layers with individual thicknesses. Investigations have been conducted on the temporal and spatial resolution of the layer structure of these wall elements, for the 3D model as well as for the reduced one.
Technical Paper

Physical 1-D System Simulation Model for Monotube Shock Absorbers for Simulation with Excitation up to 70Hz

2015-06-15
2015-01-2353
In an automotive suspension, the shock absorber plays a significant role to enable the vehicle performances, especially in ride, handling and Noise-Vibration-Harshness (NVH). Understanding its physical characteristics is of great importance, as it has a main influence on the overall vehicle performance. Within this research project simulation models for different passive monotube shock absorber systems have been created in a 1-D system simulation software. The simulation models are designed and parameterized physically. To validate the simulation models measurements on different hydropulse-shaker with specially designed control signals to investigate the response during high frequency excitation, have been done. A detailed discussion of the several models and results of a simulation to measurement comparison is given. After detailed investigation the shock absorber simulation models are now adaptable to the multi body simulation.
Technical Paper

Challenges and Opportunities of Numerically Simulating the Idle Load Case for Vehicle Thermal Management

2015-04-14
2015-01-0340
Collective life-cycle data is needed when developing components like elastomer suspension mounts. Life-time prediction is only possible using thermal load frequency distributions. In addition to current extreme load cases, the Idle Load Case is examined at Mercedes-Benz Car Group as a collective load case for Vehicle Thermal Management (VTM) numerical simulations in early development stages. It combines validation opportunities for HVAC, cooling and transmission requirements in hot-country-type ambient conditions. Experiments in climatic wind tunnels and coupled 3D CFD and heat transfer simulations of the Idle Load Case have been performed. Measurements show steady conditions at the end of the load case. Decoupling of the torque converter, changes in ambient temperature and the technical implementation of a wind barrier for still air conditions exhibit influence on component-level results. Solar load, however, does not significantly change the examined component temperatures.
Technical Paper

Numerical Investigation of Droplets Condensation on a Windshield: Prediction of Fogging Behavior

2015-04-14
2015-01-0360
An accurate model to predict the formation of fogging and defogging which occurs for low windshield temperatures is helpful for designing the air-conditioning system in a car. Using a multiphase flow approach and additional user-defined functions within the commercial CFD-software STAR-CCM+, a model which is able to calculate the amount of water droplets on the windshield from condensation and which causes the fogging is set up. Different parameters like relative humidity, air temperature, mass flow rate and droplet distributions are considered. Because of the condition of the windshield's surface, the condensation occurs as tiny droplets with different sizes. The distribution of these very small droplets must be obtained to estimate numerically the heat transfer coefficient during the condensation process to predict the defogging time.
Technical Paper

Performance Evaluation of Automotive HVAC System with the Use of Liquid Cooled Condenser

2014-04-01
2014-01-0681
Air-cooled fin and tube heat exchangers are used as a condenser in the conventional automotive Heating Ventilation & Air-Conditioning (HVAC) systems. In this study, the use of liquid cooled plate heat exchanger as a condenser in the automotive HVAC systems has been investigated. In the proposed configuration, the cabin heat absorbed by the refrigerant in HVAC system is rejected to the coolant through a liquid cooled condenser and then to the ambient air through a low temperature radiator. Hence, the proposed configuration combines heat rejection from HVAC system with a low temperature radiator circuit of power train cooling. Mixture of Ethylene glycol & Water (coolant), which is used in power train cooling system, is used as secondary fluid in the condenser.
Technical Paper

How to Model Real-World Driving Behavior? Probability-Based Driver Model for Energy Analyses

2019-04-02
2019-01-0511
A wide variety of applications such as driver assistant and energy management systems are researched and developed in virtual test environments. The safe testing of the applications in early stages is based on parameterizable and reproducible simulations of different driving scenarios. One possibility is modeling the microscopic driving behavior to simulate the longitudinal vehicle dynamics of individual vehicles. The currently used driver models are characterized by a conflict regarding comprehensibility, accuracy and calibration effort. Due to the importance for further analyses this conflict of interests is addressed by the presentation of a new microscopic driver model in this paper. The proposed driver model stores measured driving behaviors with its statistical distributions in maps. Thereby, the driving task is divided into free flow, braking in front of stops and following vehicles ahead. This makes it possible to display the driving behavior in its entirety.
Technical Paper

A Simulation Method for the Calculation of Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0226
The automotive industry uses supercharging in combination with various EGR strategies to meet the increasing demand for Diesel engines with high efficiency and low engine emissions. The charge air is heated by the EGR and the compression in the turbocharger to such an extent that high NOx emissions and a reduction in engine performance occurs. For this reason, the charge air cooler cools down the charge air before it enters the air intake manifold. In case of low pressure EGR, the charge air possesses a high moisture content and under certain operating conditions an accumulation of condensate takes place within the charge air cooler. During demanding engine loads, the condensate is entrained from the charge air cooler into the combustion chamber, resulting in misfiring or severe engine damage.
Technical Paper

Application and Validation of CAE Methods for Comprehensive Durability Assessment of Leaf Springs with Measurement and Testing

2015-09-29
2015-01-2756
Securing the desired strength and durability characteristics of suspension components is one of the most important topics in the development of commercial vehicles because these components undergo multiaxial variable amplitude loading. Leaf springs are essential for the suspension systems of trucks and they are considered as security relevant components in the product development phase. In order to guide the engineers in the design and testing department, a simulation method is developed as explained by Bakir et al. in a recently published SAE paper [1]. The main aim of the present study is to illustrate the validation of this simulation method for the durability of leaf springs based on the results from testing and measurements. In order to verify this CAE Method, the calculated stresses on the leaf springs are compared with the results of strain gage measurements and the fatigue failures of leaf springs are correlated with the calculated damage values.
Technical Paper

A Numerical Methodology to Compute Temperatures of a Rotating Cardan Shaft

2013-04-08
2013-01-0843
In this paper a new numerical methodology to compute component temperatures of a rotating cardan shaft is described. In general temperatures of the cardan shaft are mainly dominated by radiation from the exhaust gas system and air temperatures in the transmission tunnel and underbody. While driving the cardan shaft is rotating. This yields a uniform temperature distribution of the circumference of the shaft. However most simulation approaches for heat protection are nowadays steady-state computations. In these simulations the rotation of the cardan shaft is not considered. In particular next to the exhaust gas system the distribution of the temperatures of the cardan shaft is not uniform but shows hot temperatures due to radiation at the side facing the exhaust gas system and lower temperatures at the other side. This paper describes a new computational approach that is averaging the radiative and convective heat fluxes circumferentially over bands of the cardan shaft.
Journal Article

Optimization of an Asymmetric Twin Scroll Volute Turbine under Pulsating Engine Boundary Conditions

2020-04-14
2020-01-0914
Future CO2 emission legislation requires the internal combustion engine to become more efficient than ever. Of great importance is the boosting system enabling down-sizing and down-speeding. However, the thermodynamic coupling of a reciprocating internal combustion engine and a turbocharger poses a great challenge to the turbine as pulsating admission conditions are imposed onto the turbocharger turbine. This paper presents a novel approach to a turbocharger turbine development process and outlines this process using the example of an asymmetric twin scroll turbocharger applied to a heavy duty truck engine application. In a first step, relevant operating points are defined taking into account fuel consumption on reference routes for the target application. These operation points are transferred into transient boundary conditions imposed on the turbine.
Technical Paper

Development of the TOP TIERTM Diesel Standard

2019-04-02
2019-01-0264
The TOP TIERTM Diesel fuel standard was first established in 2017 to promote better fuel quality in marketplace to address the needs of diesel engines. It provides an automotive recommended fuel specification to be used in tandem with regional diesel fuel specifications or regulations. This fuel standard was developed by TOP TIERTM Diesel Original Equipment Manufacturer (OEM) sponsors made up of representatives of diesel auto and engine manufacturers. This performance specification developed after two years of discussions with various stakeholders such as individual OEMs, members of Truck and Engine Manufacturers Association (EMA), fuel additive companies, as well as fuel producers and marketers. This paper reviews the major aspects of the development of the TOP TIERTM Diesel program including implementation and market adoption challenges.
Journal Article

Tire Mark Analysis of a Modern Passenger Vehicle with Respect to Tire Variation, Tire Pressure and Chassis Control Systems

2009-04-20
2009-01-0100
Tire mark analysis is an important factor in accident reconstruction. A precise determination of pre- and postcrash speeds as well as longitudinal and lateral accelerations from tire marks contributes significantly to a reliable accident reconstruction. Continuous advancements in tire and vehicle technology – in particular with respect to modern control systems such as anti-lock braking systems (ABS) – raises the question what role tire marks play in accident reconstruction today. Moreover, this accompanies the question to what extent potential interventions by vehicle control systems such as the electronic stability program (ESP®) resp. the electronic stability control (ESC) can be identified in a tire mark. The widespread use of these systems today makes them increasingly important in accident reconstruction.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Journal Article

Generation of Replacement Vehicle Speed Cycles Based on Extensive Customer Data by Means of Markov Models and Threshold Accepting

2017-01-10
2017-26-0256
The reduction of fuel consumption as well as the rising demands of customers regarding a vehicle’s driving dynamic and the legislator’s continually rising demands are a current issue in vehicle development. Hybrid vehicles offer a possibility to rise to this challenge. Realistic driving cycles are of utmost importance for the calibration of a hybrid vehicle’s operational strategy. Deriving replacement speed cycles from extensive customer data sets seems to be an approach for solving these problems. The contribution at hand describes the derivation of replacement cycles by using stochastic models, probabilistic (weighted) drawings and a combinatorial optimisation. The novelty value is that the characteristic influences of all drivers are being considered in the generation due to the stochastic modelling.
Journal Article

Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment

2013-04-08
2013-01-1064
NH₃/urea SCR is a very effective and widely used technology for the abatement of NOx from diesel exhaust. The SCR mechanism is well understood and the catalyst behavior can be predicted by mathematical models - as long as operation above the temperature limit for AdBlue® injection is considered. The behavior below this level is less understood. During the first seconds up to minutes after cold start, complete NOx abatement can be observed over an SCR catalyst in test bench experiments, together with a significant increase in temperature after the converter (ca. 100 K). In this work these effects have been investigated over a monolith Cu-zeolite SCR catalyst. Concentration step experiments varying NO, NO₂ and H₂O have been carried out in lab scale, starting from room temperature. Further, the interaction of C₃H₆ and CO with NOx over the SCR has been investigated.
X